WARNING!
For a full understanding of the performance characteristics of this equipment, the user should carefully read this manual before use of the device.
Contents

For Your Safety and that of Your Patients 3
Precautions ... 4
Intended Use ... 4
General description 4
Operating concept 5
Operation .. 6
Oxylog 1000 Device Check 6
IPPV controlled ventilation 7
Ventilation with PEEP (Special accessory) 9
End-expiratory volume measurement (Special accessory) ... 10
End of operation 10
Care ... 11
Dismantling .. 11
Disinfecting/Cleaning 12
Sterilising ... 13
Preparation ... 14
Mounting the ventilation valve 14
Installing the Oxylog 1000 15
Connecting the O2 supply 16
Checking readiness for operation 18
Testing ventilation function 18
Testing the »Paw √« alarm 19
Testing the »Paw x « alarm 19
Checking the »Psupply« alarm 20
Troubleshooting ... 21
Maintenance intervals 22
What's what .. 23
Front view ... 23
Side view .. 24
Technical data .. 25
Abbreviations and symbols 27
Appendix ... 28
Minute volume and O2 concentration as a function of airway pressure 28
Block circuit diagram 29
Order List ... 30
Index .. 31
This page is intentionally left blank
For Your Safety and that of Your Patients

Definitions

WARNING!
A WARNING statement provides important information about a potentially hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION!
A CAUTION statement provides important information about a potentially hazardous situation which, if not avoided, may result in minor or moderate injury to the user or patient or in damage to the equipment or other property.

NOTE:
A NOTE provides additional information intended to avoid inconvenience during operation.

Strictly follow these Instructions for Use

WARNING!
Strictly follow these Instructions for Use.
Any use of the product requires full understanding and strict observation of all portions of these instructions.
The device is only to be used for the purpose specified under "Intended Use" on page 4 and in conjunction with appropriate patient monitoring (see page 6). Observe all WARNING and CAUTION statements throughout this manual and all statements on device labels.

Maintenance

WARNING!
The device must be inspected and serviced regularly by trained service personnel.
Repair of the device may also only be carried out by trained service personnel.
Dräger recommends that a service contract be obtained with DrägerService and that all repairs also be carried out by them. Dräger recommends that only authentic Dräger repair parts be used for maintenance. Otherwise the correct functioning of the device may be compromised.
See chapter "Maintenance Intervals".

Accessories

Do not use accessory parts other than those in the order list.

Liability for proper function or damage
The liability for the proper function of the apparatus is irrevocably transferred to the owner or operator to the extent that the apparatus is improperly serviced or repaired by personnel not employed or authorized by DrägerService or if the apparatus is used in a manner not conforming to its intended use.
Dräger cannot be held responsible for damage caused by non-compliance with the recommendations given above. The warranty and liability provisions of the terms of sale and delivery of Dräger are likewise not modified by the recommendations given above.

Dräger Medical b.v., Best, the Netherlands
Precautions

WARNING!
Standby manual ventilation system
If the life-preserving function of the ventilator is no longer guaranteed due to a fault, the patient must immediately be ventilated with an alternative independent ventilating device, e.g. with a self-filling manual breathing bag.

WARNING!
Do not use this apparatus in explosion hazard areas.
Risk of explosion!

WARNING!
Do not use the equipment in conjunction with magnetic resonance imaging (MRI, NMR, NMI).
The apparatus may malfunction, causing danger to the patient.

CAUTION!
Ventilation monitoring
During ventilation, the patient must be constantly monitored by qualified medical personnel.

Intended Use

Oxylog 1000 – a time cycled, volume constant transport and emergency ventilator for patients requiring a minute volume ventilation of at least 3 liters per minute.

General description

Oxylog 1000 is a purely pneumatic-powered transport and emergency ventilator.

With display
- of inspiratory airway pressure P_{aw},

with audible and visual alarms for:
- airway pressure P_{aw} low
- airway pressure P_{aw} high
- O_2 supply pressure P_{supply} low

with applications in:
- mobile use in EMS and primary care of emergency patients
- patient transports and transfers by land, sea, or air.
- intra-hospital transfers of ventilated patients
- secondary transfers between hospitals
- the emergency room.
Operating concept

1 Three rotary control knobs are located in the middle of the front panel for setting the upper alarm limit for airway pressure (»Pmax«), the ventilation rate (»Freq.«) and the minute volume (»MV«).

Uniform colour codes are used to identify different scale ranges of the »Freq.« and »MV« knobs to help rapid presetting: with these colour-coded scales, the initial parameters are adapted to the relevant patient group: infants (green) / children (blue) / adults (brown).

2 The main switch 0/I for switching the ventilator on and off is in the bottom right-hand corner of the front panel.

3 With the »Air Mix/No Air Mix« switch, the user can choose between approx. 60 Vol.% O₂ and 100 Vol.% O₂.

4 The pressure gauge shows the inspiratory airway pressure.

The flag indicators for the alarms are located above the rotary control knobs for »Freq.«, »MV« and »Pmax«:

5 »Psupply« flag indicator.
 Green if the supply pressure is sufficient, turns red if the supply pressure is insufficient.

6 Indicator for the upper alarm limit »Paw «.
 Red if the airway pressure exceeds the maximum limit.

7 Indicator for lower alarm limit »Paw « turns red if lower alarm limit is not reached.

8 »button to mute the audio alarm for up to 2 minutes.

9 Indicator »« turns yellow when the alarm tone is muted.

NOTE:
The color coded ranges and patient identifications are offered solely for the convenience of the user for selecting initial settings. It is ultimately the responsibility of the user to select the correct settings for each patient.
Operation

Oxylog 1000 Device Check

The device check must be carried out before each use. Any operation of the device requires thorough knowledge of the Instructions for Use.

<table>
<thead>
<tr>
<th>Type</th>
<th>Serial No.</th>
</tr>
</thead>
</table>

Check the following points before starting up the device:

- O2 pressure supply connected
- Cylinder pressure at least 100 bar or ventilator connected to the central O2 supply
- Ventilation valve and ventilation hose connected

Testing correct operation

- Fit the test lung to the ventilation valve.
- Set the device when using a reusable hose:
 - MV: approx. 10 L/min
 - Freq.: approx. 10 bpm
 - Pmax: approx. 55 mbar
 - Main switch: I (ON)
 - Switch: »No Air Mix«
- Set the device when using a disposable hose to the settings as described in the accompanying leaflet of the disposable hose.

Oxylog 1000 must ventilate the test lung
After 5 ventilation strokes ventilation is constant, no alarms should occur.

- Squeeze the test lung, so that the airway pressure is approx. 60 mbar.
 - Paw > indicator turns red, and the audible alarm is sounded.

- Remove the test lung:
 - Paw < indicator turns red, and the audible alarm is sounded.
In the event of deviations, see "Troubleshooting", page 21.

Device check completed

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Use a prepared, operable and disinfected device.
Care, page 11.
Preparation, page 14.
Checking device ready for operation, page 18.

IPPV controlled ventilation

For ventilation frequencies of 4 to 54 breaths per minute.

For rapid presetting, uniform **colour-coded** scale ranges can be used for the rotary control knobs for the ventilation rate **Freq.** and minute volume **MV**.

1. Presetting the »Freq.« and »MV« control knobs:

<table>
<thead>
<tr>
<th>Patient group</th>
<th>Freq. 1/min</th>
<th>MV L/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green range for infants</td>
<td>28 to 54</td>
<td>3 to 5</td>
</tr>
<tr>
<td>Blue range for children</td>
<td>20 to 28</td>
<td>5 to 9</td>
</tr>
<tr>
<td>Brown range for adults</td>
<td>4 to 20</td>
<td>9 to 20</td>
</tr>
</tbody>
</table>

NOTE:
The color coded ranges and patient identifications are offered solely for the convenience of the user for selecting initial settings. It is ultimately the responsibility of the user to select the correct settings for each patient.
The I/E-ratio is fixed to approximately 1:1.5 and changes slightly depending on the setting. The I/E-ratio is within the range considered reasonable for most patients during emergency care and transport.

2 Set the desired O2 concentration with the switch:
 Air Mix approx. 60 % O2 by volume
 or
 No Air Mix = 100 % O2 by volume

WARNING!
In Air Mix mode, the applied tidal volume VT is reduced at high airway pressures due to the physical characteristics of the injector used for the mixing and the O2 concentration increases due to the smaller amount of air intake. (See also page 28 in the appendix).

WARNING!
In toxic surroundings:
— The patient must be ventilated in No Air mix mode in order to ensure that toxic constituents are not entrained into the breathing gas.
— The patient must immediately be transferred to a breathable atmosphere in order to prevent inhalation of toxic air when spontaneous breathing resumes.

Set »Pmax«
When the patient is connected:
1 Check the »MV« setting and adjust according to the patient.
2 Check the airway pressure on the pressure gauge.
3 Set desired upper alarm limit »Pmax«.
When the desired upper alarm limit set »Pmax« is reached, the machine limits the airway pressure increase by blowing off part of the inspiratory flow. Inspiration is continued by the machine.

WARNING!
Watch the pressure gauge and take note of alarm conditions in order to recognise incorrect ventilation at an early stage and prevent danger to the patient.
For heart-lung resuscitation
For resuscitation of adults using the "two helper method":
4 Set the »Freq.« knob to the heart symbol ⚚,
5 Set the »Pmax« knob to the heart symbol ⚚, approx. 55 mbar.

NOTE:
Airway pressure limiting is now activated. When the peak pressure limit is reached, tidal volume may not be fully applied under certain conditions.

Ventilation with a mask
- Connect mask to patient connection on breathing valve.
- Position mask over the face to cover the bridge of the nose and the chin, to ensure a tight fit.

Ventilation with PEEP (Special accessory)
1 Set the PEEP valve to 0 mbar = turn the knob anti-clockwise as far as it will go and fit it to the expiration connector of the ventilation valve.
Set PEEP = turn knob. The end-expiratory pressure is increased by the set PEEP value.

NOTE:
The PEEP pressure is not displayed on the pressure gauge!
Only for stationary use!

End-expiratory volume measurement (Special accessory)

To measure the end-expiratory tidal volume and end-expiratory minute volume.

Cannot be combined with the PEEP valve.

NOTE:
Strictly follow the Instructions for Use of the Volumeter 3000.

1. Clamp the Volumeter 3000 holder to the wall rail.
2. Screw the Volumeter 3000 to the holder.
3. Screw the elbow connector to the Volumeter 3000.
4. Fit adapter to expiration connector of the ventilation valve.
5. Connect the ventilation valve and Volumeter 3000 with 1.5 m long ventilation hose.

End of operation

After disconnecting the patient:

1. Switch the main switch to 0.

If the Oxylog is supplied by O₂ cylinder:
- Fully close the cylinder valve.

If the Oxylog is supplied by the central gas supply:
- Remove the gas supply connector.
Care

- After each operational use of the ventilator, dismantle and disinfect the reusable ventilation valve and ventilation hose, the volume metering parts and the reusable PEEP valve.
- The ventilator and compressed gas hoses must also be cleaned/disinfected if severely soiled.
- Use the single-use system, consisting of the ventilation valve, the ventilation hose and the single-use PEEP valve, only once. These parts are marked: For single use only!
- Dispose of the single-use components in accordance with local regulations.

Dismantling

- Remove Oxylog 1000 from its holder.
 1. Unscrew the O2 compressed gas hose from the Oxylog 1000.
 2. Remove the ventilation hose from the connector on the side of the ventilator.

CAUTION!
To remove the ventilation hose, always grip it by the sleeve and not the spiral stiffening ridges. Otherwise the spiral ridges may be torn, e.g. at the sleeve, or the hose may be ripped out of the sleeve.

- Remove the ventilation valve from the ventilation hose.
- Pull the PEEP valve out of the ventilation valve, or
- remove and dismantle the volume metering parts.
Dismantling the ventilation valve

Turn the cover about 45° anti-clockwise = unlock, and remove the cover.

3 Remove the diaphragm. Do not dismantle any further.

WARNING!
Protect the diaphragm from damage.

WARNING!
Do not allow any foreign matter to enter the housing of the ventilation valve.

WARNING!
The red non return valve in the diaphragm should not be removed, damaged or bent. Otherwise, impaired valve operation will occur, putting the patient at risk.

Disinfecting/Cleaning

Use only preparations classified as «surface disinfectants» for disinfecting. For material compatibility, we recommend preparations based on
— aldehydes,
— alcohols,
— quaternary ammonium compounds.

Due to possible damage to materials, the following preparations are unsuitable:
— compounds containing alkylamine
— compounds containing phenol
— halogen-releasing compounds
— strong organic acids
— oxygen-releasing compounds.

For users in the Federal Republic of Germany, we recommend the use of disinfectants listed in the current DGHM list (DGHM = German Society for Hygiene and Microbiology). The DGHM list (published by mhp Verlag GmbH, Wiesbaden) also specifies the active basis of each disinfectant. For countries where the DGHM list is unavailable, we recommend products based on the above active bases.
Wipe disinfecting
Ventilator, O₂ compressed gas hose:
● Wipe disinfect with e.g. Buraton 10 F or Terralin. Strictly follow the Instructions for Use of the disinfectant manufacturer. Coarse impurities must first be removed with a disposable cloth.

CAUTION!
Do not allow any liquids to penetrate inside the ventilator or O₂ compressed gas hose. Liquid inside the system can impair ventilation.

Immersion disinfecting
Dismantled components of the ventilation valve, ventilation hose, volume metering parts, **not the Volumeter 3000**:
● Disinfect in disinfectant bath with e.g. Gigasept FF = formaldehyde-free. Strictly follow the Instructions for Use of the disinfectant manufacturer.
Thoroughly stir the parts in the solution.
Do not clean with hard brushes.
Do not allow any foreign object to enter the inside of the ventilation valve.
● Rinse thoroughly with Aquadest.

CAUTION!
Allow the parts to dry fully. If any water remains in the ventilation valve, the ventilation function may be impaired.

Sterilising
Sterilise as follows if necessary:
Disassembled parts of the breathing valve, ventilation hose and mask:
● Sterilise in hot steam at 134 °C. Exposure time in accordance with EN 285: at least 3 minutes.

NOTE:
Do not expose the plastic parts to the hot steam for more than 10 minutes, since this can accelerate the ageing of the materials.

PEEP valve and Volumeter 3000
● treat as specified in their specific Instructions for use.

After care
● Preparation, page 14.
● Connect the O₂ supply, page 16.
● Betriebsbereitschaft prüfen, page 18.
Preparation

The reusable ventilation hose and the ventilation valve are supplied with the ventilator. Alternatively, the optional, pre-assembled single-use system, consisting of a ventilation hose and ventilation valve, can be used. These parts are marked:

For single use only!

Mounting the ventilation valve

1. Check that the red non-return valve is securely seated in the diaphragm and lies flat on the diaphragm.

WARNING!
The red non return valve in the diaphragm should not be removed, damaged or bent. Otherwise, impaired valve operation will occur, putting the patient at risk.

2. Insert the diaphragm in the valve housing, with the red non-return valve facing the housing.
3. The bead of the diaphragm must lie flat and flush on the edge of the housing.
4. Fit the cover as shown, press down and turn 45° clockwise to lock. The inspiration connector and the expiration connector should be facing one another. The diaphragm should fit into the housing without creasing.

5. Fit the ventilation hose to the inspiration connector of the ventilation valve.

6. Fit the ventilation hose to the connector on the ventilator.
Mounting the PEEP valve (option)
Both a reusable PEEP valve and a single-use PEEP valve are available.
The single-use PEEP valve is marked:
For single use only!
- Mount the PEEP valve on the expiration connector of the ventilation valve.
Measurement of the expiratory volume is not possible when the PEEP valve is used.

Installing the Oxylog 1000

For stationary use
- Place firmly on a level, non-slip surface, ensuring unit cannot fall,
or:
- Suspend at the head of the bed,
or:
- Suspend on a wall rail, as illustrated.

For mobile use in vehicles
- Use the vehicle mount
 1. Suspend Oxylog 1000 by its bracket on the rod of the holder.
 2. Swivel the ventilator up into the holder until it clicks into place.

To pull out the ventilator:
- Press the release catch from underneath.
Connecting the O2 supply

Take care when handling oxygen.

WARNING!
O2 is highly flammable and intensively propagates any source of fire.
Do not smoke or allow any naked flame in the vicinity of the O2 supply.
Protect O2 cylinders against falling, and do not expose them to intense heat.

WARNING!
Do not oil or grease O2 fittings, such as cylinder valves and pressure-reducing valves, and do not handle these parts with greasy hands. Fire risk.

WARNING!
Only open/close cylinder valves by hand, turning evenly.
Never use a tool to open/close the valves.

For supply by O2 cylinder

WARNING!
Use only compressed gas cylinders that conform to national safety standards and have been duly approved.

Use full cylinders with 200 bar cylinder pressure.
- Screw a pressure-reducing valve onto the O2 cylinder (for supply pressure 2.7 to 6.0 bar).

WARNING!
Use only pressure-reducing valves with an outlet exhaust valve that limits the outlet pressure to approx. 5 bar in the event of failure.

- Connect the Oxylog 1000 to the pressure-reducing valve with the compressed gas hose.
- Open the cylinder valve by turning slowly as far as it will go.

CAUTION!
Do not insert metering valves or flow meters in the O2 supply of the Oxylog 1000.
Risk of impaired function of the ventilator with consequent danger to the patient.
Determining the gas content of the O2 cylinder

Example:
Cylinder pressure measured at the pressure gauge of the pressure-reducing valve: 200 bar
O2 cylinder capacity: 2.5 L
Compressed gas content: $2.5 \text{ L} \times 200 \text{ bar} = \text{approx. 500 L}$

Estimated operating time of the Oxylog 1000

Example:
Freq. 10 bpm, $V_T = 1 \text{ L}$, $MV = 10 \text{ L/min}$

\[
\text{Operating time} = \frac{\text{Compressed gas content [L]}}{(MV + 1^*) \text{ [L/min]}}
\]

Operating time = $\frac{500}{11} = \text{approx. 45 min}$

If Oxylog 1000 is switched to «Air Mix», the gas consumption is reduced by about 50 %, thereby increasing the operating time to about 90 minutes.

For supply from a central O2 supply

- Screw the compressed gas hose to the Oxylog 1000 and insert the gas connector in the O2 supply socket.

In exceptional cases, the Oxylog 1000 may also be supplied with compressed air, in which case the O2 concentration is always 21 % by volume.

For use with the Dräger Oxator

- Screw the O2 compressed gas hose to the Oxylog 1000.
- Insert the gas connector securely into one of the two O2 ports until it clicks into place.

NOTE:
Strictly follow the Instructions for Use of the Oxator.

* Intrinsic consumption of the device: approx. 1 L/min
Checking readiness for operation

— after changing the ventilation valve,
— after each care and reassembly procedure,
— at the latest every 6 months.

Document testing in the medical products book.

Connecting the test lung

The test lung consists of the mask elbow for connecting to the ventilation valve, the Ø7 catheter connector for simulating the resistance of the airways and a 2 L breathing bag to simulate lung compliance.

• Insert the mask elbow of the test lung onto the patient connector of the ventilation valve.

Switch on the O2 supply

• Open the O2 cylinder supply by turning slowly as far as it will go
 or
• insert the O2 compressed gas connector in the supply socket until it clicks into place = tapping position.

Testing ventilation function

• Set the ventilator when using a reusable hose:

 1 »MV« knob approx. 10 L/min
 2 »Freq.« knob approx. 10 bpm
 3 »Pmax« knob approx. 55 mbar
 4 Main switch I (On)
 5 Switch »No Air Mix«

• Set the device when using a disposable hose to the settings as described in the accompanying leaflet of the disposable hose.

• Oxylog 1000 ventilates the test lung.
 After 5 ventilation strokes ventilation is constant, no alarms should occur.
Testing the »Paw « alarm

With the existing setting
1 Keep test lung completely deflated and observe pressure gauge:
 • Oxylog 1000 limits the airway pressure to approx. 55 mbar.
2 The »Paw « indicator turns red, and the audible alarm is sounded.
 1 Release the test lung.
 2 The »Paw « indicator and audible alarm are deactivated.

Testing the »Paw « alarm

With the existing setting
3 Remove the test lung from the ventilation valve:
4 The red »Paw « indicator is displayed, and the audible alarm is sounded.
5 Press the » « button,
4 The »Paw « indicator remains red; the audible alarm is muted for up to 2 minutes.
6 The indicator » « turns yellow to indicate that the alarm tone has been muted.
3 Refit the test lung:
4 The »Paw « indicator and audible alarm are deactivated.
Checking the »Psupply« alarm

- Switch off the gas supply.
 Close the cylinder valve or remove the compressed gas connector.
- The colour of the »Psupply« indicator changes from green to red, but there is no audio alarm in this case.

- Restore the gas supply:
- The colour of the »Psupply« indicator changes from red to green.

- Remove test lung from ventilation valve.

After all tests have been successfully completed, the ventilator is ready for operation.
Troubleshooting

This table is intended to assist the user to detect the underlying cause in the event of an alarm and to remedy the situation rapidly.

<table>
<thead>
<tr>
<th>Fault</th>
<th>Cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilator does not build up any airway pressure</td>
<td>Supply pressure at ventilator inlet too low; no central gas supply or O2 cylinder empty.</td>
<td>Establish sufficient supply pressure: 2.7 to 6 bar.</td>
</tr>
<tr>
<td>«Psupply» indicator red</td>
<td>»Paw« indicator red</td>
<td>Immediately connect the ventilator to a full O2 cylinder.</td>
</tr>
<tr>
<td>Ventilator remains on «Inspiration»</td>
<td>Supply pressure at ventilator inlet too low.</td>
<td>Establish sufficient supply pressure: 2.7 to 6 bar.</td>
</tr>
<tr>
<td></td>
<td>Oxylog 1000 faulty.</td>
<td>Call Dräger Service.</td>
</tr>
<tr>
<td>Patient cannot exhale, or can only exhale with difficulty</td>
<td>Ventilation hose kinked.</td>
<td>Route the ventilation hose without kinking it.</td>
</tr>
<tr>
<td></td>
<td>Red non-return valve in the diaphragm is faulty or «creased».</td>
<td>Open the ventilation valve and assemble correctly, see page 14.</td>
</tr>
<tr>
<td>«Paw ≥» indicator red</td>
<td>Stenosis in the airways.</td>
<td>Free the airways.</td>
</tr>
<tr>
<td>Audible alarm is sounded</td>
<td>Ventilation hose kinked.</td>
<td>Route the ventilation hose without kinking it.</td>
</tr>
<tr>
<td>The minute volume is not fully applied</td>
<td>Lung compliance reduced.</td>
<td>Set the «Pmax» higher.</td>
</tr>
<tr>
<td></td>
<td>Patient is "fighting the ventilator"</td>
<td>Change the ventilation pattern or sedate the patient.</td>
</tr>
<tr>
<td>«Paw ≤» indicator red</td>
<td>Disconnection/leakage at the patient connection, ventilation valve or ventilation hose.</td>
<td>Ensure that all connections are leakproof.</td>
</tr>
<tr>
<td>Audible alarm is sounded</td>
<td>Diaphragm of the ventilation valve incorrectly fitted or damaged.</td>
<td>Mount the diaphragm correctly, or replace diaphragm if faulty – see page 14. Replace the single-use system.</td>
</tr>
<tr>
<td></td>
<td>Leaky cuff.</td>
<td>Inflate the cuff and check for leaks.</td>
</tr>
</tbody>
</table>
Maintenance intervals

Clean and disinfect the ventilator or parts before each repair, even if returning components to the factory for repair.

| Inspection and servicing of the ventilator | Every 2 years by trained and qualified personnel. |
| Pressure-reducing valve | Major overhaul in accordance with the operating instructions for the pressure-reducing valve by trained and qualified personnel. |

Disposing of the apparatus

- At the end of the period of use.
- Dispose of Oxylog 1000 correctly, after consulting the appropriate disposal contractors. Relevant legal provisions should be complied with.
What's what

Front view

1 Main switch 0/I
2 »MV« rotary control knob for minute volume
3 »Freq« rotary control knob for ventilation frequency
4 Rotary control knob for upper alarm limit »Pmax«
5 Pressure gauge for inspiratory airway pressure
6 Indicator »off« to mute audible alarm tone
7 »off« key for muting the audible alarm tone
8 Indicator »Paw<« (Paw lower alarm limit)
9 Indicator »Paw>« (Paw upper alarm limit)
10 Indicator »Psupply« for supply pressure
11 »Air Mix / No Air Mix« switch
1 Connection for ventilation hose and ventilation valve
2 Connection for O2 compressed gas hose
Technical data

Environmental conditions

Operation
- Temperature: -18 to 50 °C
- Atmospheric pressure: 700 to 1100 hPa
- Humidity: 15% to 95% r. h.

Storage
- Temperature: -18 to 70 °C
- Atmospheric pressure: 700 to 1100 hPa
- Humidity: 15% to 95% r. h.

Performance characteristics

Operating principle: Flow chopper

Control: Timer-controlled, constant volume

Ventilation frequency: 4 to 54 bpm ±15%, at least ±2 bpm^*

Breathing time ratio permanently set: 1:1.5; tolerance: 1:1.2 to 1:2^*

Minute volume: 3 to 20 L/min ±20%, but at least ±1 L/min

O2 concentration of the ventilation gas when supplied with O2:
- Switch set to »Air Mix«: 60% O2 by vol. ±10%
 - for MV greater than 7 L/min
 - for MV less than 7 L/min: the O2 concentration increases up to 100% O2 by vol.
- Switch set to »No Air Mix«: 100% O2 by vol.

Safety valve: 80 ±10 mbar**

Pressure gauge: –10 to 80 mbar ±1.6% of upper range limit

Main switch: I – 0

Patient system: consisting of 1.5 m hose with ventilation valve

Compliance: approx. 1 mL/mbar

Expiration resistance: <6 mbar/L/s

Clearance space: approx. 12 mL

Connection for PEEP valve: 30 mm cone in accordance with EN 1281-1

* The tolerances indicated apply to the table on page 7 for frequency and minute volume relative to the reference condition NTPD (20 °C, 1013 hPa, dry gas). The tolerances are greater, for physical reasons, if maximum minute volume and maximum frequency are set at the same time.

** 1 mbar = 0.1 kPa
Alarms

Psupply low

Alarm triggered when the supply pressure drops below 2.7 bar*. In the case of a slow pressure drop, an audible alarm is also activated.

Paw high ≥

The visual and audible alarm are activated when the set value is exceeded. Range: 25 to 60 mbar ±10%, but at least ±4 mbar.

Paw low ≤

The visual and audible alarm are triggered if a pressure of 10 mbar ±3 is not exceeded during inspiration.

Audio alarm muting

The audible alarm can be muted for up to 2 minutes.

Audible alarm volume

>75 dB (A) at a distance of 1 m

Gas supply

Supply gas

Medical O₂.

In exceptional cases: compressed air

Conditioning of supply gas

Dry, oil-free, dust-free

Supply

From a central O₂ supply system or from compressed gas cylinders

Gas pressure

2.7 to 6.0 bar at 60 L/min

O₂ cylinders and pressure-reducing valves

Must conform to national safety standards and be duly certified

Pressure-reducing valves

Must have an exhaust valve on the outlet side to limit the outlet pressure to about 5 bar in the event of a fault

O₂ connection

NIST O₂, NIST AIR/O₂, DISS or AFNOR

Gas consumption

Internal control

approx. 1.0 L/min

Patient

with »Air Mix«

approx. 50 % of the effective minute volume

with »No Air Mix«

100 % of the effective minute volume

Typical operating time for a minute volume of 10 L/min

with 11 L O₂ cylinder / 200 bar

approx. 200 minutes without mixing (No Air Mix)

approx. 400 minutes with mixing (Air Mix)

with 2.5 L O₂ cylinder / 200 bar

approx. 45 minutes without mixing (No Air Mix)

approx. 90 minutes with mixing (Air Mix)

* 1 bar = 1 kPa x 100
Technical data

Dimensions (W x H x D) mm
215 x 90 x 215 (without handle)

Weight

<table>
<thead>
<tr>
<th>Description</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxylog 1000 (basic unit)</td>
<td>3.15 kg</td>
</tr>
<tr>
<td>Ventilation hose, reusable, 1.5 m</td>
<td>0.35 kg</td>
</tr>
<tr>
<td>Ventilation valve, reusable</td>
<td>0.06 kg</td>
</tr>
<tr>
<td>Single-use hose system (consisting of ventilation hose and ventilation valve)</td>
<td>0.11 kg</td>
</tr>
</tbody>
</table>

Materials used

<table>
<thead>
<tr>
<th>Component</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilator housing</td>
<td>Impact-resistant acrylonitrile butadiene styrene (ABS)</td>
</tr>
<tr>
<td>Ventilation hose, reusable</td>
<td>Silicone rubber</td>
</tr>
<tr>
<td>Ventilation valve housing, reusable</td>
<td>Polysulphone (PSU), silicone rubber</td>
</tr>
<tr>
<td>Single-use hose system</td>
<td>Silicone rubber, polycarbonate (PC), polypropylene (PP), ethylene vinylacetate (EVA)</td>
</tr>
</tbody>
</table>

Classification

according to Directive 93/42/EC, Appendix IX

Class IIb

UMDNS-Code

Universal Medical Device Nomenclature System

18 – 098

Type of protection

IPX4

Abbreviations and symbols

Air Mix Mixing of O₂ with ambient air, approx. 60 % O₂ by vol.
IPPV Intermittent Pressure Ventilation
Freq. Ventilation frequency, strokes per minute
MV Minute volume, L/min
No Air Mix No mixing with ambient air, 100 % O₂ by volume
Paw Airway pressure
Paw ≥ Upper alarm limit of airway pressure
Paw ≤ Lower alarm limit of airway pressure
PEEP Positive End Expiratory Pressure
Pmax Set point for upper alarm limit Paw
P_supply Supply pressure
❤ Setting symbol for ventilation rate and airway pressure during heart-lung resuscitation
💰 Audio alarm muting
Appendix

Minute volume and O2 concentration as a function of airway pressure

Air Mix function

Oxylog 1000 supplies the air/O2 mixture (Air Mix) by means of an injector that draws in additional air from the atmosphere to generate an air/O2 mix with an O2 concentration of about 60% by volume.

Due to the laws of physics, the suction effect of injectors decreases with increasing back pressure.

With high airway pressures, the minute volume MV set may be reduced during the Air Mix function, thereby increasing the O2 concentration.

At airway pressures up to 20 mbar, the set and applied minute volume (MV) are the same. An additional increase of airway pressure by 10 mbar leads to a reduction of the volume applied by about 10%. The set minute volume MV should possibly be increased appropriately.

Since less air is drawn from the atmosphere when there is an increase in airway pressure, the O2 concentration increases.

At a low minute volume MV of under 7 L/min, concentrations of up to 100% by volume can be attained.

No Air Mix function

The applied minute volume MV is not a function of the airway pressure. The O2 concentration is always 100%.

Minute volume as a function of ambient air pressure

The applied minute volume MV is also dependent on the atmospheric pressure of the surrounding area (reference value 1013 hPa). If the atmospheric pressure is reduced by 100 hPa, the supplied minute volume MV is increased by about 10%.
Appendix

Block circuit diagram

Function description of the Oxylog 1000 with reference to the block circuit diagram

The supply gas, O₂ (or compressed air), is channelled via the filter 1, the on/off switch 2 to the ventilation block 3, which can optionally be connected to the "Air Mix" module 4.

The minute volume is set by the "MV" valve 5 and controls the ventilation block 3.

The frequency is set by the "Freq." valve 6 and acts on the frequency control 7, which is coupled to the alarm logic system 8.

The upper alarm limit "Pmax" is set with the "Pmax" rotary knob 9 and opens a valve in the ventilation block 3, so that the airway pressure is limited during inspiration.

The alarm logic 8 is connected to the "audible alarm muting control" 10 by push-button - 11. When button - 11 is pressed, the yellow indicator - 12 is displayed, and the audible alarm is suppressed for up to 2 minutes.

Additional relief valve 13 is permanently set and opens at a specified pressure of around 80 mbar.

The emergency air valve 14 permits spontaneous breathing by the patient in the event of ventilator failure.
Order List

<table>
<thead>
<tr>
<th>Name and description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic unit</td>
<td></td>
</tr>
<tr>
<td>Oxylog 1000 Time-cycled, constant volume emergency ventilator with alarms for high and low airway pressure and low supply pressure</td>
<td>2M 86 105</td>
</tr>
<tr>
<td>Optional accessories</td>
<td></td>
</tr>
<tr>
<td>Caddy</td>
<td>57 03 300</td>
</tr>
<tr>
<td>Carrying system 1000</td>
<td>2M 86 001</td>
</tr>
<tr>
<td>Wall Holder for Carrying System 1000</td>
<td>2M 86 103</td>
</tr>
<tr>
<td>Spare bag for Carrying System 1000</td>
<td>AB 41 047</td>
</tr>
<tr>
<td>Vehicle bracket</td>
<td>84 12 069</td>
</tr>
<tr>
<td>Test lung</td>
<td>84 03 201</td>
</tr>
<tr>
<td>Ventilation hose E ISO, reusable, 1.5 m</td>
<td>2M 86 511</td>
</tr>
<tr>
<td>Ventilation hose E ISO, reusable, 3.0 m</td>
<td>21 12 760</td>
</tr>
<tr>
<td>Ventilation valve, reusable</td>
<td>2M 86 800</td>
</tr>
<tr>
<td>Reusable PEEP valve (0 to 10 mbar)</td>
<td>84 07 475</td>
</tr>
<tr>
<td>Single-use hose system (25 pieces) consisting of ventilation hose with ventilation valve</td>
<td>2M 86 837</td>
</tr>
<tr>
<td>Single-use PEEP valve (5 to 20 mbar)</td>
<td>2M 86 832</td>
</tr>
<tr>
<td>Connecting hoses</td>
<td></td>
</tr>
<tr>
<td>CG-connecting hoses*</td>
<td></td>
</tr>
<tr>
<td>Gas Supply System</td>
<td>57 04 500</td>
</tr>
</tbody>
</table>

* Central piped gas supply
Index

A
Abbreviations .. 27
Accessories .. 3
Applications .. 4

B
Before using for the first time 4

C
Central O2 supply 17
Checking readiness for operation 18
Connection O2 supply 16

D
Definitions ... 3
Device Check ... 6
Disinfecting/Cleaning 12
Dismantling .. 11
Disposing of the apparatus 22
Dräger Oxator, use of 17

E
End of operation 10
End-expiratory volume measurement 10
Environmental conditions 25

F
Front view ... 23

H
Heart-lung resuscitation 9

I
Immersion disinfecting 13
Installing the Oxylog 1000 15
Intended use ... 4
IPPV .. 7

M
Maintenance intervals 22

O
Operating concept 5
Order List ... 30

P
PEEP valve ... 15
Performance characteristics 25
Pmax .. 8
Precautions ... 4

S
Side view ... 24
Sterilising ... 13
Symbols ... 27

T
Technical data 25
Test lung, connecting 18
Testing the »Paw 19
Testing the »Paw >« alarm 19
Troubleshooting 21

V
Ventilation valve, Dismantling 12
Ventilation with a mask 9
Ventilation with PEEP 9

W
What's what .. 23
Wipe disinfecting 13
These Instructions for Use apply only to
Oxylog 1000
with Serial No.:
If no Serial No. has been filled in by
Dräger these Instructions for Use are
provided for general information only and
are not intended for use with any specific
machine or device.

Directive 93/42/EEC
concerning Medical Devices

Dräger Medical b.v.
Kanaaldijk 29
5683 CR BEST
The Netherlands
☎ +31 499 331 331
FAX +31 499 331 333
medical.best@draeger.com
www.draeger-medical.com